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In this study a neural network (NN) model was designed to predict lycopene and β-carotene
concentrations in food samples, combined with a simple and fast technique, such as UV-vis

spectroscopy. The measurement of the absorbance at 446 and 502 nm of different β-carotene and

lycopene standard mixtures was used to optimize a neural network based on a multilayer perceptron

(MLP) (learning and verification process). Then, for validation purposes, the optimized NN has been

applied to determine the concentration of both compounds in food samples (fresh tomato, tomato

concentrate, tomato sauce, ketchup, tomato juice, watermelon, medlar, green pepper, and carrots),

comparing the NN results with the known values of these compounds obtained by analytical

techniques (UV-vis and HPLC). It was concluded that when the MLP-NN is used within the range

studied, the optimized NN is able to estimate the β-carotene and lycopene concentrations in food

samples with an adequate accuracy, solving the UV-vis interference of β-carotene and lycopene.
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INTRODUCTION

Linear and nonlinear algorithms have been used to provide an
adequate resolution of complex spectra such as for food
samples (1-3), to interpret voltamperometries of mixtures com-
posed of glucose, uric, and ascorbic acids (4) or hazardous
chemicals (5), or to solve the interference of UV-vis spectra to
quantify the concentration of chemicals in quaternary complex
mixtures composed of hydrocarbons and ionic liquids (6).

Despite great interest in both lycopene and β-carotene analysis
in food products, which can be carried out by different methods,
at present there is not a technique highly versatile, fast, sensitive,
and selective such as needed for a reliable analysis of the complex
matrices that can be found in food samples (7-10).

Olives Barba et al. optimized and compared anHPLCmethod
with a spectrophotometric standard method for the determina-
tion of lycopene and β-carotene in vegetables (11). These authors
indicated the overlap of lycopene and β-carotene spectra, near
446 nm, as the main reason of observed deviations, compared
with optimized HPLC analysis data. The HPLCmethod showed
goodaccuracy and sensitivity for the quantificationof lycopene in
fruit and vegetable samples, being more specific than spectopho-
tometry. However, the spectrometric method can be used to
rapidly assess the lycopene and β-carotene content of different
vegetables products, but this method showed an overestimation
of β-carotene content in lycopene-rich samples.

To solve this problem multilayer perceptron (MLP) neural
networks (NNs) have been applied as a fast and reliable tool
to accurately determine the β-carotene and lycopene concentra-
tions in complex mixtures using a common analytical and
simple technique such as UV-vis spectroscopy, avoiding inter-
ferences, overestimation, and time-consuming calibration
methods (12).

To continue in this research area, the main goal of the present
study has been to apply the previously developedNNs based on a
MLP to analyze a wide range of food samples as complex
matrices containing lycopene and β-carotene, with different
carotenoid profiles in order to propose a reliable mathematical
model that estimates the lycopene and β-carotene concentrations
using the absorbance values at 446 and 502 nm obtained by
a common analytical and simple technique such as UV-vis
spectroscopy (solving the overlapping effect) and tested with a
more complex analytical and accurate technique such as HPLC.

MATERIALS AND METHODS

Reagents, Standards, Food Samples, Instrumentation, and Ana-

lytical Methods. Standards of all-trans-lycopene and β-carotene were
from Sigma (St. Louis, MO) with purity of g90%.

TheHPLCgrade solvents were purchased fromSymta (Madrid, Spain)
in the case of methanol and acetonitrile (ACN) and from Sigma
(Steinheim, Germany) in the case of triethylamine (TEA) and tetra-
hydrofuran (THF) stabilized with <0.025% butylated hydroxytoluene.
The reagent grade solvents used in liquid-liquid extraction were supplied
by Merck (Darmstadt, Germany) in the case of n-hexane; diethyl ether,
acetone, and ethanol were supplied by Panreac (Barcelona, Spain).
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Doubly distilled water was obtained from a Milli-Q System (Millipore,
Bedford, MA).

Standards Mixtures. A five-level factor experimental design (25
standard mixtures) of two factors and two response variables was
performed to optimize the MLP NN model (12). These factors were
concentration values of β-carotene and lycopene working standard
solutions by diluting in n-hexane (Merck) in a range between 0.4 and
3.2 μgmL-1. The response variables were the absorbance values at 446 nm
for β-carotene and at 502 nm for lycopene. Their purity was checked by
calculating the concentration of the standard solution using the extinction
coefficient (13, 14).

Food Samples. A total of 25 vegetable food samples were used for
carrying out two external validation processes of theMLPNNmodel used
in this study. These included 10 lycopene-rich samples (tomato concen-
trate, tomato sauce, ketchup, tomato juice, and tomato pure), which were
used for its first external validation. The remaining 15 vegetable samples
(fresh tomato, carrots, watermelon fruits, green pepper, and medlar) were
selected by their different carotenoid profiles (15,16) and used as a second
external validation sample.

Instrumentation. A Perkin-Elmer UV-visible spectrophotometer
(Lambda EZ210) was used for absorbance measurements using quartz
cells of path length of 1 cm.Data acquisition and spectrometric evaluation
were carried out by Perkin-Elmer software PESSW version 1.2. In all
cases, a minimum of three replicate measurements of spectroscopic
absorption for each sample were carried out.

The chromatographic apparatus consisted of a Micron Analı́tica, S.A.
(Madrid, Spain) PU II isocratic pumping system; a Jasco (Tokyo, Japan)
AS-1555 autosampler; a ERC-Gecko-2000 (Riemerling, Germany) column
heater; and a Thermo Separation Spectra series UV100 (San Jose, CA)
UV-vis detector. For data processing and analysis, Biocrom 2000 3.0
version software from Micron Analı́tica, S.A. was used. The analytical
column was a μBondapack C18 (300 mm� 2 mm, 10 μm pore size), with a
μBondapack C18 precolumn (20 mm � 3.9 mm, 10 μm pore size), both
purchased fromWaters (Milford,MA).AB€uchi LabortechnikAG (Flawil,
Switzerland) rotatory evaporator was used to obtain the dry extracts.

AnalyticalMethods. Sampleswere extracted in amixtureof hexane/
acetone/ethanol (50:25:25). After 30 min in magnetic stirring, 10 mL of
water was added, and the upper hexane layer was separated for spectro-
photometric analysis at 446 and 502 nm. Another aliquot was evaporated
to dryness and diluted in a mixture of THF/ACN/methanol (15:30:55 v/v/
v) for HPLC analysis according to Olives Barba et al. (11). Every sample
was prepared in triplicate, and then each one was monitored three times.

Using individual standard concentrations of β-carotene and lycopene
and their respective absorbance values at 502 and 446 nm (UV-vis
spectrophotometry), as well as their respective peak areas (HPLC), the
calibration equations were obtained (Table 1). The calibration parameters
and sensitivity of the methods applied to β-carotene and lycopene analysis
are also shown inTable 1. The detection (LOD) and quantification (LOQ)
limits for these analytical methods have been estimated following ICH
Guideline Q2B (17), eqs 1 and 2

LOD ¼ 3S

m
ð1Þ

LOQ ¼ 10S

m
ð2Þ

where S and m are, respectively, the intercept and slope of fit equations.

Neural Network Model. The NN used here is based on a multilayer
perceptron, which is a feed-forward and supervised network. It consists of
several neurons (information-processing units) arranged in two or more
layers. Each receives information on all of the neurons of the previous
layer. Each connection is controlled by aweight thatmodules the output of
the neuron before inputting its numerical content into a neuron in the
following layer. The process by which the weights are optimized is called
the learning or training process (6,18,19). The training algorithm used to
optimize the weights is based on a back-propagation (BP) algorithm (19).
The inputs of each neuron are added by activation function, and the result
is transformed by a transfer function, which serves to limit the amplitude
of the neuron output. When the NN parameters are adjusted, by a slight
refresh of its weights, the NN is able to learn from its environment. The
NNmodel used in thisworkwas designedusingMatlab version 7.01.24704
(R14) (18). The statistical analyseswere carried out bySPSSversion 15.0.1.

Description of Learning, Verification, and Validation Sam-
ples (Database). Considering that theNNused is based on a supervised
algorithm, to optimize thematrix ofweights it is necessary to use input and
output data that adequately characterize the process to bemodeled. In this
work, the data are organized in four rows (absorbance at 446 and 502 nm
and their respective β-carotene and lycopene concentration values) and
one column for each sample measured. For learning and verification
purposes standard mixture data were randomly distributed into the
learning (80%) and verification (20%) samples.

For validation, two sets of samples have been considered. The first
validation sample is composed of β-carotene and lycopene concentrations
(obtained by UV-vis spectroscopy) from tomato concentrate, tomato
sauce, ketchup, tomato juice, and tomato pure (10 lycopene-rich food
samples). The second validation set of samples includes β-carotene and
lycopene concentrations of fresh tomato, carrots, watermelon fruits, green
pepper, and medlar (15 samples with different carotenoid profiles)
obtained by HPLC.

Neural NetworkModel Optimization and Verification Pro-
cess. The MLP model here used consists of three layers (input, hidden,
and output), a topology widely used to model systems with similarly
complex levels (6). In particular, the input layer consists of two nodes to
input the absorbance values at 446 and 506 nm. The output layer consists
of two neurons to estimate the lycopene and β-carotene concentrations.
The neurons in the hidden layer or hidden neurons number (HNN) should
be fixed by optimization techniques (vide infra).

As the absorbance values ranged between 0 and 1, the sigmoid function
(bounded in the same range) has been selected to be used as the MLP
transfer function (18, 19).

The NN training is done by the application of the BP algorithm, which
is based on the Bayesian regularization (trainBR) training function. It was
selected because the generalization power of trainBR is higher than those
of other training functions and, in addition, it avoids overfitting and
overtraining when the small learning sample is used (18). TrainBR
minimizes a linear combination of squared errors and weights by the
computation of the Hessian matrix of this combination (18, 20). In
addition to the weights (vide supra), its parameters are the learning
coefficient (Lc), learning coefficient decrease (Lcd), and learning coeffi-
cient increase (Lci). TheLcparameter is similar to “h” inNewton’smethod
(often called the Newton-Raphson method). Lcd and Lci control the
value of Lc depending on the MLP model performance. To avoid an
overfitting of the NN model, the learning process was repeated while the
verification mean square error (MSE), defined by eq 3, was decreased. A

Table 1. Calibration Parameters and Sensitivity of the UV-Vis and HPLC Methods Applied to Lycopene and β-Carotenea

equation range (μg mL-1) R2 σ intercept σ slope LODb (μg) LOQc (μg)

UV-Vis

lycopene Abs502 = 0.200 [C μg mL-1] - 0.001 0.4-3.2 >0.999 0.002 0.001 0.04 0.11

β-carotene Abs446 = 0.252 [C μg mL-1] - 0.001 0.4-3.2 >0.999 0.003 0.002 0.04 0.13

HPLC

lycopene area = 103521 [C μg mL-1] þ 3003.2 2-9 >0.999 1008.39 157.21 0.087 0.29

β-carotene area = 105641 [C μg mL-1] - 325.8 0.25-5 >0.999 5368.00 2129.96 0.099 0.03

a R2, correlation coefficient; σ, standard deviation; LOD, limit of detection; LOQ, limit of quantification. bEquation 1. cEquation 2.
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detailed description of the calculation process is described in the litera-
ture (5).

MSE ¼ 1

N

XN

k ¼1

ðrk -yk Þ2 ð3Þ

In eq 3, N, yk, and rk are, respectively, the number of data sets of the
database, the response of each output neuron, and its respective real
output response. The HNN and NN parameters are optimized by an
experimental design based on the Box-WilsonCentral Composite Design
24þ Star Points, commonly called a central composite design. This design
contains an imbedded factorial design with center points that is enlarged
with a group of star points that allows the estimation of curvature (21,22).
The experimental factors analyzed were Lc (between 1 and 0.001), Lcd
(between 1 and 0.001), and Lci (between 2 and 100) (23). Taking the
learning sample size into account, the HNN range was selected (between 1
and 10) (24). The responses of the experimental design were the mean
prediction error (MPE, eq 4) and the correlation coefficient (predicted vs
real values, R2). Both indices are easily computed and provide a good
description of the predictive performance of the NN model (25).

MPE ¼ 1

N

XN

k¼1

jrk -yk j
rk

� 100 ð4Þ

Due to the fact that the main goal is to have a NN that predicts
carotenoid concentrations with the highest accuracy possible, the con-
sideration taken into account to analyze the experimental design was to
obtain the least MPE with the highest values of the correlation coefficient
(estimation of lycopene and β-carotene concentrations byNN versus their
respective experimental concentration values).

Neural Network Model Validation Process. To test the opti-
mized NNmodel, two external validation processes were carried out. The
lycopene and β-carotene concentrations of food samples were estimatedby
the NN model using as inputs the absorbance values at 446 and 502 nm.
Once the estimation process had finished, the values obtained (outputs)
were statistically compared with the experimental ones (UV-vis and
HPLC).

RESULTS AND DISCUSSION

Neural Network Model Optimization and Verification. The NN
optimized (Table 2) consists of two nodes to input the absorbance
values at 446 and 506 nm. The output layer consists of two
neurons to estimate the lycopene and β-carotene concentrations
and five hidden neurons number

Using the verification sample, the β-carotene and lycopene
were estimated, and these were statistically compared with the
experimental concentration values. The mean correlation coeffi-
cient was >0.99, and MPE values were less than 1 and 2.1%,
respectively. InTable 3, the main statistical results corresponding
to these NN estimations versus experimental concentrations are
shown.

Neural Network Model Validation. First Validation Process.
Using the validation sample, which is composed of lycopene and
β-carotene concentration present in fresh tomato, tomato con-
centrate, tomato sauce, ketchup and tomato juice (10 samples of
tomato products chosen due to their high lycopene content
together with the presence of β-carotene), the optimized NN
model has been tested. The optimized NN was used to estimate
the concentrations of lycopene and β-carotene in the aforemen-
tioned food samples by their absorbance values at 446 and 502
nm. Then, these estimations and their respective concentration
values measured by the UV-vis technique values (vide supra)
were statistically compared (Table 4). Correlation coefficients of
estimated versus experimental values of lycopene and β-carotene
are >0.99, and the MPE values were less than 2.02 and 3.61%,
respectively. The slopes of their linear fits are close to 1 (0.984 and
1.103 for lycopene and β-carotene cases, respectively).

Second Validation Process. To complete the validation of the
prediction capability of the optimized NN, a new validation
sample was performed based on the β-carotene and lycopene
concentration values in different vegetable food samples (fresh
tomato, watermelon, green pepper, carrots, and medlar), which
were determined also by HPLC. The mathematical procedure
followed was similar to the validation process described above.
Both R2 of estimated versus experimental values are >0.99, and
MPE values in the cases of lycopene and β-carotene are less than
0.29 and 2.97%, respectively (Table 5 and Figure 1). The slopes
of their linear fits are close to 1 (0.999 and 1.002 for β-carotene
and lycopene cases, respectively). The meanMPE in the verifica-
tion process (1.55%) is less than that in the first (2.81%) and
second (1.63%) validation processes. This result is in accordance
with the complexity of the samples studied. In light of these
results, for both compounds analyzed, the optimized NN model
presents reliable results (carotenoids concentrations) when com-
pared to the HPLC values.

Therefore, for the concentration range studied (0.4-3.2 μg
mL-1), the interference problems between β-carotene and lyco-
pene can be adequately solved by the optimized models based on
MLP algorithms.

To conclude, the NN model applied is an adequate tool to
determine accurately the β-carotene and lycopene concentration

Table 2. Parameters and Characteristics of the Optimized Neural Network
(NN) Model

NN model characteristics
transfer function sigmoid function

training function trainBR

optimized parameters of the NN model

input neurons number 2

hidden neurons number (HNN) 5

output neurons number 2

learning coefficient 0.40

learning coefficient decrease 0.60

learning coefficient increase 62

Table 3. Main Statistical Results of the Neural Network Model Corresponding
to Verification Sample

β-carotene lycopene

mean prediction error (MPE, %) 1.0 2.1

correlation coefficient, R2 >0.99 >0.99

standard deviation (μg mL-1) 0.011 0.025

Table 4. Validation of Optimized Neural Network Model To Estimate Caro-
tenoid Concentration in Food Samples Measured by UV-Vis

lycopene (μg mL-1) β-carotene (μg mL-1)

food samples UV-vis estimated UV-vis estimated

tomato concentrate 1 1.955a 1.969 1.004a 1.032

2 2.798a 2.781 1.536a 1.643

tomato sauce 1 1.711a 1.689 0.881a 0.941

2 1.591a 1.639 0.909a 0.889

ketchup 1 1.706a 1.739 0.964a 0.970

2 1.461a 1.501 0.778a 0.731

tomato juice 1 1.401a 1.457 0.699a 0.679

2 1.192a 1.155 0.675a 0.700

tomato puree 1 1.272a 1.305 0.663a 0.665

2 2.818a 2.826 1.536a 1.594

statistical results

mean prediction error (MPE, %) 2.028 3.607

correlation coefficient, R2 >0.99 >0.99

aReference 12 .
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in the tested food samples. This improvement in results inter-
pretation will be very valuable for its application to a fast and
reliable β-carotene and lycopene evaluation without using com-
plex analytical techniques as HPLC. Even more, due to these
mean predictive errors and the sample preparation time of this
tool, this model could be appropriate to determine the concen-
tration of these chemical compounds on line for quality and
process control in the food industry, with minimum pretreatment
of samples.
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Table 5. Application of Optimized Neural Network Model To Estimate
Carotenoid Concentration in Food Samples Measured by HPLC

lycopene (μg mL-1) β-carotene (μg mL-1)

food samples HPLC estimated HPLC estimated

fresh tomato 1 1.246 1.228 0.212 0.225

2 1.216 1.205 0.202 0.208

3 1.207 1.232 0.191 0.170

carrot 1 0 0 2.748 2.748

2 0 0 3.071 3.039

3 0 0 2.972 2.998

watermelon 1 2.192 2.197 0.388 0.388

2 2.04 2.043 0.317 0.317

3 2.533 2.544 0.377 0.377

green pepper 1 0 0 0.106 0.113

2 0 0 0.068 0.064

3 0 0 0.104 0.110

medlar 1 0 0 0.553 0.561

2 0 0 0.349 0.352

3 0 0 0.461 0.452

statistical results

mean prediction error (MPE, %) 0.290 2.973

correlation coefficient, R2 >0.99 >0.99

Figure 1. Application of optimized NN model to estimate β-carotene (9)
and lycopene (2) concentration in food samples (HPLC concentrations)
(R 2 > 0.99).
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